서강대학교 로욜라도서관

탑메뉴

전체메뉴

전체메뉴닫기


검색

상세정보

파이썬 데이터 사이언스 핸드북 : IPython, Jupyter, NumPy, Pandas, Matplotlib, Scikit-Learn 라이브러리를 활용한 데이터 과학과 머신러닝

Vanderplas, Jacob T

상세정보
자료유형단행본
서명/저자사항파이썬 데이터 사이언스 핸드북 : IPython, Jupyter, NumPy, Pandas, Matplotlib, Scikit-Learn 라이브러리를 활용한 데이터 과학과 머신러닝 / 제이크 밴더플래스 지음 ; 김정인 옮김
개인저자Vanderplas, Jacob T.
김정인, 역
발행사항파주 : 위키북스, 2017
형태사항xxiii, 588 p. : 삽화(일부천연색), 표 ; 24 cm
총서명DS ;5
원서명Python data science handbook :essential tools for working with data
ISBN9791158390730
일반주기 본서는 "Python data science handbook : essential tools for working with data. 2016."의 번역서임
색인수록
일반주제명Python (Computer program language)
Data mining
언어한국어

소장정보

서비스 이용안내
  • 찾지못한자료찾지못한자료
  • SMS발송SMS발송
메세지가 없습니다
No. 등록번호 청구기호 소장처/자료실 도서상태 반납예정일 예약 서비스
1 1314279 005.133 P6VA K 1관4층 일반도서 대출가능
찾지못한자료 SMS발송


서평 (0 건)

서평추가

서평추가
별점
별0점
  • 별5점
  • 별4.5점
  • 별4점
  • 별3.5점
  • 별3점
  • 별2.5점
  • 별2점
  • 별1.5점
  • 별1점
  • 별0.5점
  • 별0점
제목입력
본문입력

*주제와 무관한 내용의 서평은 삭제될 수 있습니다.

출판사 제공 책소개

출판사 제공 책소개 일부

≪파이썬 데이터 사이언스 핸드북≫은 데이터 과학에 대한 갈증을 해소하기에 좋은 입문서다. 초보자부터 전문가까지 아우르는 넓은 사용자층을 가진 매력적인 언어인 파이썬 언어가 제공하는 과학 스택을 이용해 실제 데이터 과학 분야에서 자주 만나는 상황을 해결해 나감으로써 이론부터 실전까지 적절하게 아우르고 있다.

이 책에서는 같은 데이터 타입을 가진 배열 기반의 데이터를 처리하기 위한 NumPy, 여러 가지 데이터 타입의 레이블이 붙은 데이터를 처리하는 Pandas, 보편적인 과학 계산 작업을 위한 SciPy, 게재 가능한 수준의 시각화를 위한 MatPlotlib, 대화형 코드 실행과 공유를 위한 IPython, 머신러닝을 위한 Scikit-Learn 라이브러리를 집중적으로 다루며, 특히 5장에서는 머신러닝 전체를 조망하고 각 기법을 어떻게 응용할 수 있는지 살펴볼 수 있어 실전 감각을 익히기에 부족함이 없도록 구성하고 있다.

출판사 리뷰
많은 연구원에게 파이썬은 데이터를 저장, 가공하고 데이터에서 통찰력을 얻을 수 있는 라이브러리 덕분에 데이터를 다루기에 최고의 도구로 여겨진다. 여러 참고 자료에서 파이썬 ...

출판사 제공 책소개 전체

≪파이썬 데이터 사이언스 핸드북≫은 데이터 과학에 대한 갈증을 해소하기에 좋은 입문서다. 초보자부터 전문가까지 아우르는 넓은 사용자층을 가진 매력적인 언어인 파이썬 언어가 제공하는 과학 스택을 이용해 실제 데이터 과학 분야에서 자주 만나는 상황을 해결해 나감으로써 이론부터 실전까지 적절하게 아우르고 있다.

이 책에서는 같은 데이터 타입을 가진 배열 기반의 데이터를 처리하기 위한 NumPy, 여러 가지 데이터 타입의 레이블이 붙은 데이터를 처리하는 Pandas, 보편적인 과학 계산 작업을 위한 SciPy, 게재 가능한 수준의 시각화를 위한 MatPlotlib, 대화형 코드 실행과 공유를 위한 IPython, 머신러닝을 위한 Scikit-Learn 라이브러리를 집중적으로 다루며, 특히 5장에서는 머신러닝 전체를 조망하고 각 기법을 어떻게 응용할 수 있는지 살펴볼 수 있어 실전 감각을 익히기에 부족함이 없도록 구성하고 있다.

출판사 리뷰
많은 연구원에게 파이썬은 데이터를 저장, 가공하고 데이터에서 통찰력을 얻을 수 있는 라이브러리 덕분에 데이터를 다루기에 최고의 도구로 여겨진다. 여러 참고 자료에서 파이썬 라이브러리를 소개하지만, 대부분은 각 라이브러리를 개별적으로 다룬다. 하지만 ≪파이썬 데이터 사이언스 핸드북≫은 IPython, NumPy, Pandas, Matplotlib, Scikit-Learn을 비롯한 관련 도구를 모두 다룬다.

파이썬 코드를 읽고 작성하는 데 익숙한 과학자나 데이터 분석가라면 이 책이 데이터의 가공, 변환, 정제와 다른 유형의 데이터 시각화, 통계 모델이나 머신러닝 모델 구축을 위한 데이터 활용 면에서 흔히 발생하는 문제를 해결하기에 가장 이상적인 종합 참고서가 될 것이다. 간단히 말해, 이 책은 파이썬으로 과학 컴퓨팅을 하기 위해서 반드시 소장해야 할 책이다.

이 핸드북을 통해 다음 도구의 사용법을 학습할 수 있다.
◎ IPython과 Jupyter: 파이썬을 이용하는 데이터 과학자를 위한 컴퓨팅 환경 제공
◎ NumPy: 파이썬의 복잡한 데이터 배열을 효율적으로 저장하고 가공할 수 있는 ndarray(n 차원 배열 객체) 제공
◎ Pandas: 파이썬에서 레이블이 붙거나 칼럼 형식의 데이터를 효율적으로 저장하고 가공하기 위한 DataFrame 자료구조 제공
◎ Matplotlib: 파이썬을 이용한 유연한 데이터 시각화 기능 제공
◎ Scikit-Learn: 기존 머신러닝 알고리즘 중 가장 중요한 것을 파이썬으로 효율적이고 깔끔하게 구현한 라이브러리
이전 다음

함께 비치된 도서