서강대학교 로욜라도서관

탑메뉴

전체메뉴

전체메뉴닫기


검색

상세정보

R로 마스터하는 머신 러닝 : 업무에 활용할 수 있는 선형모델에서 딥러닝까지

Lesmeister, Cory

상세정보
자료유형단행본
서명/저자사항R로 마스터하는 머신 러닝 : 업무에 활용할 수 있는 선형모델에서 딥러닝까지 / 코리 레즈마이스터 지음 ; 김종원 [외] 옮김
개인저자Lesmeister, Cory
김종원, 역
김태영, 역
류성희, 역
이호, 역
발행사항서울 : 에이콘, 2018
형태사항550 p. : 삽화(일부천연색), 표 ; 24 cm
총서명Acorn + PACKT technical book 시리즈
원서명Mastering machine learning with R :advanced prediction, algorithms, and learning with R 3.x
ISBN9791161751283
9788960772106 (set)
일반주기 부록: A. R의 기본 -- B. 자료 출처(컬러 이미지)
공역자: 김태영, 류성희, 이호
본서는 "Mastering machine learning with R : advanced prediction, algorithms, and learning with R 3.x. 2nd ed. 2017."의 번역서임
서지주기참고문헌(p. 509-510)과 색인수록
일반주제명Machine learning
R (Computer program language)
언어한국어

이 책의 다른 판을 확인할 수 있습니다. 이 책의 다른 판 보기

소장정보

서비스 이용안내
  • 찾지못한자료찾지못한자료
  • SMS발송SMS발송
메세지가 없습니다
No. 등록번호 청구기호 소장처/자료실 도서상태 반납예정일 예약 서비스
1 1350712 005.133 R3LE 2017/K 1관4층 일반도서 대출가능
찾지못한자료 SMS발송


서평 (0 건)

서평추가

서평추가
별점
별0점
  • 별5점
  • 별4.5점
  • 별4점
  • 별3.5점
  • 별3점
  • 별2.5점
  • 별2점
  • 별1.5점
  • 별1점
  • 별0.5점
  • 별0점
제목입력
본문입력

*주제와 무관한 내용의 서평은 삭제될 수 있습니다.

출판사 제공 책소개

출판사 제공 책소개 일부

통계 계산과 그래픽에 특화된 언어인 R을 사용해 머신 러닝을 배우는데 필요한 여러 통계적 기법을 실제 사례에 적용하며 설명한다. 복잡한 수식이나 전문 프로그래밍 기법을 사용하지 않으면서, 선형 회귀에서부터 분류 문제나 딥러닝, 추천 시스템, 군집화, 시계열 분석, 텍스트 마이닝까지 머신 러닝의 거의 전 영역에 대해 실제 데이터를 이용해 간결한 R 코드로 명확하게 설명한다. 기초 통계와 프로그래밍을 조금 할 줄 안다면 더욱 더 이해하기 쉬울 것이다.

★ 이 책에서 다루는 내용 ★

■ 실제 업계에서 머신 러닝 도구를 적용하는 방법
■ R을 사용해 데이터를 분석하기 전에 효과적으로 준비하는 작업
■ 데이터를 효과적으로 시각화하는 방법
■ 분석을 위해 학습용 데이터 세트와 테스트용 데이터 세트를 만드는 이유와 방법에 대한 이해
■ 가장 기본적인 머신 러닝 방법인 선형 회귀와 로지스틱 회귀
■ 서포트 벡터 머신 같은 심화 머신 러닝 방법 이해
■ 아마존 클라우드 서비스에서 R 사용하기

★ 이 책의 대상 독자 ★

데이터 과학자, 데이터 분석가, R을 이용해 머신...

출판사 제공 책소개 전체

통계 계산과 그래픽에 특화된 언어인 R을 사용해 머신 러닝을 배우는데 필요한 여러 통계적 기법을 실제 사례에 적용하며 설명한다. 복잡한 수식이나 전문 프로그래밍 기법을 사용하지 않으면서, 선형 회귀에서부터 분류 문제나 딥러닝, 추천 시스템, 군집화, 시계열 분석, 텍스트 마이닝까지 머신 러닝의 거의 전 영역에 대해 실제 데이터를 이용해 간결한 R 코드로 명확하게 설명한다. 기초 통계와 프로그래밍을 조금 할 줄 안다면 더욱 더 이해하기 쉬울 것이다.

★ 이 책에서 다루는 내용 ★

■ 실제 업계에서 머신 러닝 도구를 적용하는 방법
■ R을 사용해 데이터를 분석하기 전에 효과적으로 준비하는 작업
■ 데이터를 효과적으로 시각화하는 방법
■ 분석을 위해 학습용 데이터 세트와 테스트용 데이터 세트를 만드는 이유와 방법에 대한 이해
■ 가장 기본적인 머신 러닝 방법인 선형 회귀와 로지스틱 회귀
■ 서포트 벡터 머신 같은 심화 머신 러닝 방법 이해
■ 아마존 클라우드 서비스에서 R 사용하기

★ 이 책의 대상 독자 ★

데이터 과학자, 데이터 분석가, R을 이용해 머신 러닝을 하는, 실무 지식이 있는 사람들 대상으로 한다. 갖고 있는 기술을 한 단계 더 끌어올려 이 분야에서 전문가가 되고 싶은 사람을 위한 책이다.

★ 2판에 추가된 내용 ★

1장, '성공을 위한 과정'에서는 순서도상의 오타를 정정하고 새로운 방법론을 추가했다.
2장, '선형 회귀 - 머신 러닝의 기본 기술'에서는 코드를 개선하고 좀 더 나은 도표를 넣었다. 이를 제외하면 초판과 가까운 편이다.
3장, '로지스틱 회귀와 판별 분석'에서는 코드를 개선하고 정리했다. 좋아하는 기법인 다변량 적응 회귀 스프라인(multivariate adaptive regression spline)을 추가했는데, 잘 동작하고 비선형 데이터를 다룰 수 있으며 사용하기도 쉽다. 이를 기준 모형으로 사용해 다른 "도전자" 모형들이 이보다 더 성능이 좋은지 살펴본다.
4장, '선형 모형에서 고급 피처 선택'에서는 회귀뿐만 아니라 분류 문제도 다룬다.
5장, '다른 분류 기법들 - K-최근접 이웃법과 서포트 벡터 머신'에서는 코드를 정리했다.
6장, '분류 트리와 회귀 트리'에서는XG부스트(XGBoost) 패키지가 제공하는 매우 좋은 기법을 사용하는 것과 피처를 선택할 때 랜덤 포레스트(random forest) 기법을 사용을 추가했다.
7장, '신경망과 딥러닝'에서는 딥러닝 방법에 관한 최신 정보를 넣었고, 하이퍼파라미터(hyperparameter) 검색을 포함해 H2O 패키지에 관련된 코드를 개선했다.
8장, '군집화 분석'에서는 랜덤 포레스트를 이용해 비지도학습(unsupervised learning)을 하는 방법을 넣었다.
9장, '주성분 분석'에서는 다른 데이터 세트를 사용하고, 표본 외 예측(out-of-sample prediction)을 추가했다.
10장, '장바구니 분석, 추천 엔진과 순차적 분석'에서는 영업 분야에서 점점 더 중요해지고 있는 순차적 분석(sequential analysis)을 추가했다.
11장, '앙상블 생성과 다중 클래스 분류'에서는 여러 좋은 패키지를 사용해 완전히 새롭게 썼다.
12장, '시계열 자료와 인과관계'에서는 몇 년간의 기후 자료를 더 추가했고, 인과관계를 검사하는 여러 방법을 보여준다.
13장, '텍스트 마이닝'에서는 데이터를 추가하고 코드를 개선했다.
14장, '클라우드에서 R 사용하기'에서는 클라우드에서 R을 사용하는 법을 쉽고 빠르게 배울 수 있다.
부록 A. 'R의 기본'에서는 데이터를 다루는 방법을 추가했다.
부록 B. '자료 출처'에서는 자료 출처와 참고 자료의 목록을 작성했다.
이전 다음
이전 다음

함께 비치된 도서