서강대학교 로욜라도서관

탑메뉴

전체메뉴

전체메뉴닫기


검색

상세정보

(실전!) GAN 프로젝트 : 텐서플로와 케라스를 이용한 차세대 생성적 적대 신경망 모델 구축

Ahirwar, Kailash

상세정보
자료유형단행본
서명/저자사항(실전!) GAN 프로젝트 : 텐서플로와 케라스를 이용한 차세대 생성적 적대 신경망 모델 구축 / 카일라쉬 아히르와 지음 ; 박진수 옮김
개인저자Ahirwar, Kailash
박진수, 역
발행사항파주 : 위키북스, 2019
형태사항xviii, 282 p. : 삽화, 표 ; 24 cm
총서명데이터 사이언스 시리즈 ;43
원서명Generative adversarial networks projects :build next-generation generative models using Tensorflow and Keras
ISBN9791158391751
일반주기 색인수록
GAN은 'Generative Adversarial Networks' 의 약어임
감수: 잘라지 트하나키(Jalaj Thanaki)
본서는 "Generative adversarial networks projects : build next-generation generative models using Tensorflow and Keras. 2018."의 번역서임
일반주제명Artificial intelligence
Machine learning
Neural networks (Computer science)
언어한국어

소장정보

서비스 이용안내
  • 찾지못한자료찾지못한자료
  • SMS발송SMS발송
메세지가 없습니다
No. 등록번호 청구기호 소장처/자료실 도서상태 반납예정일 예약 서비스
1 1355391 006.31 A285g K 1관4층 일반도서 정리중 예약


서평 (0 건)

서평추가

서평추가
별점
별0점
  • 별5점
  • 별4.5점
  • 별4점
  • 별3.5점
  • 별3점
  • 별2.5점
  • 별2점
  • 별1.5점
  • 별1점
  • 별0.5점
  • 별0점
제목입력
본문입력

*주제와 무관한 내용의 서평은 삭제될 수 있습니다.

출판사 제공 책소개

출판사 제공 책소개 일부

파이썬 생태계를 사용하는 다양한 생성적 적대 신경망 아키텍처를 탐구해 본다!

생성적 적대 신경망(Generative Adversarial Networks, GAN)을 사용하면 어떤 데이터 분포이든지 모방할 수 있기 때문에, 이를 바탕으로 차세대 인공지능 모델을 구축할 수 있다. GAN은 다양한 머신러닝 분야 중에서도 급속히 발전하는 분야로, 주요 연구개발 작업이 GAN과 관련하여 이뤄지고 있다. 이 책에서는 비지도학습 기술을 사용해 일곱 가지 GAN 프로젝트를 처음부터 끝까지 구축해 본다.

이 책에서는 GAN 프로젝트를 진행할 때 프로젝트를 효율적으로 구축하는 데 필요한 개념과 도구 및 라이브러리부터 알아본다. 또, 서로 다른 프로젝트에서 다양한 데이터셋을 사용하며 각 장마다 요구되는 작업의 복잡도가 증가한다. 이 책에서는 3D-GAN, DCGAN, StackGAN, CycleGAN처럼 인기 있는 접근방식을 다루며, 이것들을 실제로 구현해 봄으로써 생성 모델의 아키텍처와 기능을 이해할 수 있게 하였다.

이 책을 마치고 나면 직장에서 맡은 일이나 자신이 진행하는 일과 관련하여 GAN 모델을 처음부...

출판사 제공 책소개 전체

파이썬 생태계를 사용하는 다양한 생성적 적대 신경망 아키텍처를 탐구해 본다!

생성적 적대 신경망(Generative Adversarial Networks, GAN)을 사용하면 어떤 데이터 분포이든지 모방할 수 있기 때문에, 이를 바탕으로 차세대 인공지능 모델을 구축할 수 있다. GAN은 다양한 머신러닝 분야 중에서도 급속히 발전하는 분야로, 주요 연구개발 작업이 GAN과 관련하여 이뤄지고 있다. 이 책에서는 비지도학습 기술을 사용해 일곱 가지 GAN 프로젝트를 처음부터 끝까지 구축해 본다.

이 책에서는 GAN 프로젝트를 진행할 때 프로젝트를 효율적으로 구축하는 데 필요한 개념과 도구 및 라이브러리부터 알아본다. 또, 서로 다른 프로젝트에서 다양한 데이터셋을 사용하며 각 장마다 요구되는 작업의 복잡도가 증가한다. 이 책에서는 3D-GAN, DCGAN, StackGAN, CycleGAN처럼 인기 있는 접근방식을 다루며, 이것들을 실제로 구현해 봄으로써 생성 모델의 아키텍처와 기능을 이해할 수 있게 하였다.

이 책을 마치고 나면 직장에서 맡은 일이나 자신이 진행하는 일과 관련하여 GAN 모델을 처음부터 끝까지 구축하고 훈련하고 최적화하는 능력을 지니게 될 것이다.

★ 이 책에서 다루는 내용 ★

◎ 3D ShapeNet이라고 부르는 데이터셋을 사용해 신경망을 훈련해 진짜 같은 형상을 생성하게 해 본다.
◎ DCGAN을 케라스로 구현해 애니메이션 캐릭터를 생성하게 해 본다.
◎ SRGAN 신경망을 구현해 고해상도 이미지를 생성하게 해 본다.
◎ 위키에서 따낸 사진으로 Age-cGAN을 훈련해 사람이 나이를 먹어도 신경망이 그 사람의 얼굴을 잘 알아볼 수 있게 한다.
◎ 조건부 GAN을 사용해 신경망이 영상을 또 다른 영상으로 변환하게 해 본다.
◎ StackGAN에 쓰이는 생성기와 판별기를 케라스로 구현하며 이해한다.
이전 다음
이전 다음

함께 비치된 도서