서강대학교 로욜라도서관

탑메뉴

전체메뉴

전체메뉴닫기


검색

상세정보

(김기현의) 자연어 처리 딥러닝 캠프 : 파이토치 편

김기현

상세정보
자료유형단행본
서명/저자사항(김기현의) 자연어 처리 딥러닝 캠프 : 파이토치 편 / 김기현 지음
개인저자김기현
발행사항서울 : 한빛미디어, 2019
형태사항520 p. : 천연색삽화, 표 ; 24 cm
총서명소문난 명강의
ISBN9791162241974
서지주기참고문헌(p. 500-511)과 색인수록
언어한국어

소장정보

서비스 이용안내
  • 찾지못한자료찾지못한자료
  • SMS발송SMS발송
메세지가 없습니다
No. 등록번호 청구기호 소장처/자료실 도서상태 반납예정일 예약 서비스
1 1362015 006.31 김19ㅈ 1관4층 일반도서 대출중 2020-03-10 예약
SMS발송
2 1358680 006.31 김19ㅈ 1관4층 일반도서 대출중 2020-03-10
SMS발송


서평 (0 건)

서평추가

서평추가
별점
별0점
  • 별5점
  • 별4.5점
  • 별4점
  • 별3.5점
  • 별3점
  • 별2.5점
  • 별2점
  • 별1.5점
  • 별1점
  • 별0.5점
  • 별0점
제목입력
본문입력

*주제와 무관한 내용의 서평은 삭제될 수 있습니다.

출판사 제공 책소개

출판사 제공 책소개 일부

최신 딥러닝 기술을 활용한 자연어 처리
기본기부터 실전 심화까지 한 권으로 끝내기

자연어 처리 기초부터 심화까지 파이토치를 활용하여 짜임새 있게 설명한다. 저자가 현업에서 시스템을 구현하며 얻은 경험과 인사이트를 최대한 담았다. 자칫 지루할 수 있는 수학적 이론을 최소화하고 실전에 꼭 필요한 개념을 정리했다. 최신 딥러닝을 활용한 기술뿐만 아니라, 딥러닝 이전의 전통적인 방식도 차근차근 설명하여 왜 지금의 기술이 필요하고, 어떤 부분이 성능 개선을 이끌어냈는지 쉽게 이해할 수 있다. 딥러닝과 머신러닝 관련 개념과 이론의 기본기를 어느 정도 갖춘 독자라면 자연어 처리를 실무에 적용하는 데 필요한 지식을 이 한 권으로 체계적으로 익힐 수 있다.

저자의 현장 경험과 인사이트를 녹여낸 본격적인 활용 가이드
이 책은 저자가 현장에서 실제로 시스템을 구축하며 얻은 경험과 그로부터 얻은 인사이트를 꾹꾹 눌러 담은 본격적인 자연어 처리 활용서입니다. 자연어 처리의 배경이 되는 수학적 이론부터 실무와 밀접한 파이토치 예제 코드, 그리고 실전에 꼭 필요한 직관적 개념까지 한데 모아 소개합니다.

출판사 제공 책소개 전체

최신 딥러닝 기술을 활용한 자연어 처리
기본기부터 실전 심화까지 한 권으로 끝내기

자연어 처리 기초부터 심화까지 파이토치를 활용하여 짜임새 있게 설명한다. 저자가 현업에서 시스템을 구현하며 얻은 경험과 인사이트를 최대한 담았다. 자칫 지루할 수 있는 수학적 이론을 최소화하고 실전에 꼭 필요한 개념을 정리했다. 최신 딥러닝을 활용한 기술뿐만 아니라, 딥러닝 이전의 전통적인 방식도 차근차근 설명하여 왜 지금의 기술이 필요하고, 어떤 부분이 성능 개선을 이끌어냈는지 쉽게 이해할 수 있다. 딥러닝과 머신러닝 관련 개념과 이론의 기본기를 어느 정도 갖춘 독자라면 자연어 처리를 실무에 적용하는 데 필요한 지식을 이 한 권으로 체계적으로 익힐 수 있다.

저자의 현장 경험과 인사이트를 녹여낸 본격적인 활용 가이드
이 책은 저자가 현장에서 실제로 시스템을 구축하며 얻은 경험과 그로부터 얻은 인사이트를 꾹꾹 눌러 담은 본격적인 자연어 처리 활용서입니다. 자연어 처리의 배경이 되는 수학적 이론부터 실무와 밀접한 파이토치 예제 코드, 그리고 실전에 꼭 필요한 직관적 개념까지 한데 모아 소개합니다.

이 책의 수학적 내용이나 수식이 어렵게 다가오거나 거부감이 드는 독자라면 일단 수식은 가볍게 읽고 넘어가며 큰 그림을 먼저 이해한다는 느낌으로 완독하시고 이후 다시 처음부터 정독하시길 추천합니다. 딥러닝과 머신러닝 기본기를 어느 정도 갖춘 독자라면 자연어 처리를 실무에 적용하는 데 필요한 지식을 이 한 권으로 체계적으로 익힐 수 있습니다. 기출간 도서에서 다루는 내용이나 인터넷에서 쉽게 접할 수 있는 내용, 머신러닝/딥러닝 입문 수준의 내용, 파이토치 사용법 등은 최소화했습니다. 대신 자연어 처리에 관한 내용을 최대한 많이, 깊이 있게 다루고자 했습니다.

이 책의 전반부에는 먼저 자연어에 대한 이해를 높이고, 단어 임베딩 벡터나 텍스트 분류와 같은 실무에 적용 가능한 내용을 통해 딥러닝을 활용한 자연어 처리 방법을 설명합니다. 후반부에는 언어 모델 및 번역이라는 과제에 대해 다루며, 자연어 생성 방법을 깊이 있게 이야기합니다. 자연어 생성의 근간 알고리즘인 시퀀스 투 시퀀스(seq2seq)뿐만 아니라 어텐션(attention) 기법을 자세히 설명하고, 실전 실무 수준에서 고민해야 하는 깊은 내용을 다룹니다. 나아가 자연어 생성 성능을 더욱 끌어올리기 위한 기법들을 강화학습부터 듀얼리티에 이르기까지 다양하게 활용하여 상세히 설명합니다.

주요 내용
● 딥러닝을 활용한 자연어 처리 개요와 지금까지의 기술 연구 성과
● 자연어 처리 이해에 필요한 확률과 정보 이론 등의 수학적 개념
● 파이토치의 설치 방법과 간단한 튜토리얼 소개
● 정규 표현식을 활용한 노이즈 제거, 단어와 문장 분절, 병렬 코퍼스 생성 등 전처리 설명
● 워드넷 등의 어휘 분류 사전을 자연어 처리에 응용하는 방법
● 단어 의미의 유사성과 모호성에 따른 문제들을 머신러닝을 통해 해결하는 방법
● 차원 축소를 통해 단어의 특징(feature)을 효과적으로 추출하고, 기존의 오픈소스들을 활용해 실습하는 법
● 자연어 처리에 가장 활용도가 높은 순환 신경망(RNN)의 원리와 입출력 방식
● 합성곱 신경망(CNN) 소개와, 이를 통해 텍스트를 분류하는 방법
● 기존의 언어 모델링 방식과 신경망 기반 언어 모델링 방식의 비교
● 기계번역의 개념과, seq2seq 및 어텐션을 활용해 자연어를 생성하는 방법
● 기계번역의 성능을 더욱 끌어올리는 추가적인 주제와 기법 소개
● 강화학습과 폴리시 그래디언트, 듀얼리티, 전이학습에 대한 설명
● 신경망 기반 기계번역(NMT) 시스템 구성 요소와 서비스 제공 사례
이전 다음
이전 다음

함께 비치된 도서