서강대학교 로욜라도서관

탑메뉴

전체메뉴

전체메뉴닫기


검색

상세정보

인공지능 : 튜링 테스트에서 딥러닝까지

이건명

상세정보
자료유형단행본
서명/저자사항인공지능= Artificial intelligence : 튜링 테스트에서 딥러닝까지 / 이건명 지음
개인저자이건명
발행사항파주 : 생능, 2018
형태사항847 p. : 삽화 ; 25 cm
ISBN9788970509594
일반주기 부록: A. 확률 이론 -- B. 선형대수학
서지주기참고문헌(p. 818-826)과 색인수록
언어한국어

소장정보

서비스 이용안내
  • 찾지못한자료찾지못한자료
  • SMS발송SMS발송
메세지가 없습니다
No. 등록번호 청구기호 소장처/자료실 도서상태 반납예정일 예약 서비스
1 1338085 006.3 이13ㅇ 1관4층 일반도서 대출중 2020-09-07
SMS발송
2 1338084 006.3 이13ㅇ 1관4층 일반도서 대출가능
찾지못한자료 SMS발송


서평 (0 건)

서평추가

서평추가
별점
별0점
  • 별5점
  • 별4.5점
  • 별4점
  • 별3.5점
  • 별3점
  • 별2.5점
  • 별2점
  • 별1.5점
  • 별1점
  • 별0.5점
  • 별0점
제목입력
본문입력

*주제와 무관한 내용의 서평은 삭제될 수 있습니다.

출판사 제공 책소개

출판사 제공 책소개 일부

인공지능의 전통 기술에서 딥러닝까지

최근 인공지능은 일상어가 되어버렸다. 인공지능이 4차 산업혁명 시대의 핵심 기술이라고도 한다. 인공지능이 미래를 크게 바꿀 것이라고 한다. 인공지능 때문에 일자리가 사라지고 생존이 위협받을 수도 있다고 한다. 요즘은 비전공자가 말하는 인공지능 이야기를 더 자주 접하게 된다. 어떤 때는 공감하기 어렵고, 때로는 잘못된 이야기도 듣는다

이 책은 인공지능의 전통적인 기술에서 최근의 딥러닝까지 인공지능의 전문적인 내용을 소개한다. 학부생부터 심화된 학습을 하는 대학원생이나 연구자들도 참고할 수 있도록 전문적인 수준까지 다루고 있다.

이 책의 내용

이 책은 핵심 이론, 응용, 도구, 부록편으로 구성되어 있다. 이론편인 1장부터 6장까지는 인공지능 핵심 이론이라 할 수 있는 탐색과 최적화, 지식 표현과 추론, 기계학습, 딥러닝, 계획수립에 대해서 다룬다.

응용편인 7장부터 10장까지는 인공지능의 주요 응용분야라고 할 수 있는 데이터 마이닝, 자연어 처리, 컴퓨터 비전, 지능 로봇에 대해서 소개한다.

도구편인 1...

출판사 제공 책소개 전체

인공지능의 전통 기술에서 딥러닝까지

최근 인공지능은 일상어가 되어버렸다. 인공지능이 4차 산업혁명 시대의 핵심 기술이라고도 한다. 인공지능이 미래를 크게 바꿀 것이라고 한다. 인공지능 때문에 일자리가 사라지고 생존이 위협받을 수도 있다고 한다. 요즘은 비전공자가 말하는 인공지능 이야기를 더 자주 접하게 된다. 어떤 때는 공감하기 어렵고, 때로는 잘못된 이야기도 듣는다

이 책은 인공지능의 전통적인 기술에서 최근의 딥러닝까지 인공지능의 전문적인 내용을 소개한다. 학부생부터 심화된 학습을 하는 대학원생이나 연구자들도 참고할 수 있도록 전문적인 수준까지 다루고 있다.

이 책의 내용

이 책은 핵심 이론, 응용, 도구, 부록편으로 구성되어 있다. 이론편인 1장부터 6장까지는 인공지능 핵심 이론이라 할 수 있는 탐색과 최적화, 지식 표현과 추론, 기계학습, 딥러닝, 계획수립에 대해서 다룬다.

응용편인 7장부터 10장까지는 인공지능의 주요 응용분야라고 할 수 있는 데이터 마이닝, 자연어 처리, 컴퓨터 비전, 지능 로봇에 대해서 소개한다.

도구편인 11장부터 16장까지는 실제 실습해 볼 수 있는 도구들로써 규칙 기반 시스템 개발 도구인 Jess, 기계학습 및 데이터 마이닝 도구인 Weka, 딥러닝 프레임워크인 텐서플로우(TensorFlow), 텍스트 처리를 위한 파이썬 패키지, 컴퓨터 비전 라이브러리 OpenCV, 그리고 로봇 소프트웨어 개발프레임워크 ROS를 소개한다. 도구편은 직접 실습을 해 볼 수 있도록 도구 사용 방법뿐만 아니라 실제 동작하는 다수의 프로그램을 포함하고 있다. 부록에서는 이론 이해 및 수식 전개에서 필요한 기본적인 확률 이론과 선형대수학에 대해서 소개한다. 다루는 주제가 많아 한 학기 강의에서는 전체 내용을 다룰 수 없다. 학부 인공지능 강의, 대학원 딥러닝 강의 및 기계학습 강의를 위한 권장 주제를 뒤에 첨부해 두었다.

함께 비치된 도서